Wir verwenden Cookies

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern.


Wissenschaftliche Publikation

Autonomous Image Based Localisation For A Martian Aerobot

Publikation aus Digital

Dave Barnes, Andy Shaw, Phil Summers, Roger Ward, Mark Woods, Malcolm Evans, Paar G, Mark Sims

ISPRS Symposion “From Sensors to Imagery”, Paris, July 3-6, 2006 , 2006


Aerobot technology is generating a good deal of interest in planetary  exploration circles. Balloon based aerobots have much to o®er ESA's Aurora programme, e.g. high resolution mapping, landing site selection, rover guidance, data relay, sample site selection, payload delivery, and atmospheric measurement. Aerobots could be used in a variety of con¯gurations from uncontrolled free-°ying to tethered rover operation, and are able to perform a range of important tasks which other exploration vehicles cannot. In many ways they provide a missing `piece' of the exploration `jig-saw', acting as a bridge between the capabilities of in-situ rovers and non-contact orbiters. Technically, a Lighter than Air (LTA) aerobot concept is attractive because it is low risk, low-cost, e±cient, and much less complex than Heavier than Air (HTA) vehicles such as ¯xed wing gliders, and crucially, much of the required technology `building blocks' currently exist. Smart imaging and localisation is a key enabling technology for remote aerobots. Given the current lack of comprehensive localisation and communication systems, it is important that aerobots are equipped wih the ability to determine their location, with respect to a planet's surface, to a suitable accuracy and in a self-su±cient way. The availability of a variety of terrain  feature extraction, point tracking, and image compression algorithms, means that such a self-reliant system is now achievable. We are currently developing a demonstrator imaging and localisation package (ILP) for a Martian balloon. This ILP system will incorporate a unique combination of image based relative and absolute localisation techniques. We propose to demonstrate our ILP using both simulation and a real laboratory based model aerobot. The availability of both simulated and real aerobot data will provide a comprehensive test and evaluation framework for the ILP functionality.