Wir verwenden Cookies

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern.

Analyse & Performance

Wissenschaftliche Publikation

A Mobile Vision System for Multimedia Trouist Applications in Urban Environment

Publikation aus Digital

Paletta L., Fritz G., Seifert C., Luley P., Almer A.

Proc IEEE Intelligent Transportation System Conference (ITSC2006),Toronto, Canada , 2006


We present a computer vision system for the detection and identification
 of urban objects from mobile phone imagery, e.g., for the application
 of tourist information services. Recognition is based on MAP decision
 making over weak object hypotheses from local descriptor responses
 in the mobile imagery. We present an improvement over the standard
 SIFT key detector (Lowe, 2004) by selecting only informative (i-SIFT)
 keys for descriptor matching. Selection is applied first to reduce
 the complexity of the object model and second to accelerate detection
 by selective filtering. We present results on the MPG-20 mobile phone
 imagery with severe illumination, scale and viewpoint changes in
 the images, performing with p ap 98% accuracy in identification,
 efficient (100%) background rejection, efficient (0%) false alarm
 rate, and reliable quality of service under extreme illumination
 conditions, significantly improving standard SIFT based recognition
 in every sense, providing mportant for mobile vision - runtimes which
 are ap 8 (ap 24) times faster for the MPG-20 (ZuBuD) database.