
 

 

 

Semantic Interpretation of 3D Point Clouds 

DI Dr. Olaf Kähler 

Introduction   

This paper summarizes the application areas and state-of-the-art of 3D point cloud interpretation, in particular 

algorithms for 3D object detection and 3D semantic segmentation. It starts by highlighting the main 

advantages of interpreting point cloud data directly, instead of using image interpretations as an indirect 

helper. Next, it underlines that a wide range of representations for 3D point clouds have been tried and tested 

to achieve efficient processing in neuronal networks. Finally, two case studies are shown where the 

algorithms are applied to large-scale railway and road datasets. In both cases, the JOANNEUM RESEARCH 

workflow for point cloud interpretation proved to be highly successful in detecting and classifying relevant 

assets. 

Motivation 

Nowadays it is common to record 3D digital models of critical assets and in particular infrastructure. With 

recent advances in recording and data processing technologies, such geometric Digital Twins provide 

representations with unprecedented detail and accuracy. Given sufficient data recording and storage 

capacities, these geometric Digital Twins can be pushed even to large scale applications, such as digital 

representations of entire motorways, railway lines or similar structures. 

The enabling technology for such processes is mobile mapping. Today, a variety of sensor systems is 

available on the market, which can be mounted on UAVs, cars, boats, or can be carried by hand. They 

typically deliver high precision 3D point clouds, often already colorized, and additionally high-resolution image 

data. Both are georeferenced and thereby allow deriving the absolute location of individual measurements 

up to a precision of few centimetres. 

However, while the purely geometric representation forms a solid basis for manual data exploration and 

planning, additional semantic information is required to enable automated functions like search, data filtering 

and data linking. This level of semantic enrichment is crucial for establishing large-scale digital solutions for 

asset management, predictive maintenance and simulations. Methods from Machine Learning and Artificial 

Intelligence are ideally suited to automate the generation of this semantic information, even with respect to 

very specific application requirements. In Machine Learning models, a distinction is made between methods 

for object detection and methods for semantic segmentation. Object detection has the goal of coarsely 

detecting an object in a dataset, with high efficiency. Semantic segmentation intends to associate each 

individual measurement (3D point or image pixel) to a specific class such as “rail” or “mast”. In both cases, 

the unique labels can be further linked to data like BIM, plans, component lists or legal documents. 
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How to perform object detection or semantic segmentation on 
Digital Twin models from mobile mapping?  

One option is to apply 2D image-processing on the available data. There are well-known image-based object 

detectors and segmentation algorithms available, which can be applied with comparably little effort. However, 

taking the next step from an image-based object detection to a precise geo-location is more complex. It either 

requires the triangulation of very precise object locations using an equally precise camera calibration, or 

searching for all 3D-points, which can be associated to a detected object in the image. Moreover, image-

based detection and segmentation are highly sensitive to changes of perspective. An AI-algorithm trained to 

detect vehicles from a side-view will inevitably fail on images taken from a bird’s eye view. 

Algorithms operating directly on 3D point clouds offer a superior alternative with several advantages. First, 

they require only the 3D dataset to operate. This typically makes up only a small fraction of the data volume, 

compared to an equivalent image dataset. Second, results on the 3D dataset give the desired geo-referenced 

information directly, without the need for further processing. Third, 3D point clouds from modern sensors 

differ very little between different recording platforms. Therefore, the methodology and trained models for 

processing e.g. train-based scans directly transfer to UAV-based scans. Last but not least, 3D point cloud 

data naturally carries spatial information about e.g. neighbourhoods and foreground vs. background objects, 

that is more difficult to infer from RGB and depth images. 

3D Data Interpretation 

At a first glance, establishing the semantic interpretation algorithms purely based on 3D point clouds seems 

somewhat more complicated: image-based computer vision tasks are by and large solved with convolutional 

neuronal networks, or massively profit in other ways from the efficiency arising from densely sampled 

neighbourhoods in pixel space. Such technologies do not easily transfer to 3D point clouds, as these are 

neither densely sampled, nor arranged in a fixed grid by default. Therefore, a different machine-learning 

technology must be applied, especially in terms of a suitable 3D scene representation. This report shows that 

the relevant technologies not only exist in the literature, but that they are mature and ready for application in 

industrial settings, even at large scale.  

3D Semantic Interpretation Workflows 

For 2D images, object detection is a fundamental and widely applicable computer vision task. Whether it is 

for counting vehicles in traffic applications, focusing on faces in photography or finding objects in warehouse 

shelves, object detection is about identifying and localizing individual instances of known object categories. 

In contrast, differentiating vegetation vs. roads, finding outlines of a tray or identifying warehouse shelves 

requires semantic segmentation approaches due to the lack of defining shapes and extents in the relevant 

structures. For 2D images, semantic segmentation assigns a unique class label to each pixel in an image. 

The same fundamental goals are relevant for interpreting 3D point clouds. Accordingly, 3D object detection 

algorithms have been developed for identifying vehicles and pedestrians in autonomous driving tasks, objects 

in a tray for bin-picking or catenary masts along railway lines for surveying applications. For such tasks, 

oriented bounding boxes around the objects convey all relevant information for further processing. Likewise, 

semantic segmentation algorithms for 3D point clouds identify individual 3D points belonging to vegetation or 

ground, to railheads or catenary wires in scans from mobile mapping data, or the exact shape of clothes for 

bin picking applications. 
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Depending on the exact recording conditions, the 2D approaches can have advantages when it comes to 

identifying very small details, as the resolution of mobile mapping systems is somewhat coarser. Apart from 

that, i.e. whenever the relevant structures are represented in the point cloud, algorithms working directly on 

the 3D data offer a range of advantages. The most obvious advantage of 3D interpretation workflows is their 

ability to predict 3D positions directly and without requiring an aggregation step for potentially conflicting 

detections in individual images. This completely avoids an error prone additional processing step, for which 

standardized off-the-shelf solutions do not exist. Additionally, the depth information, which is lost in projective 

2D images, offers valuable additional cues for delineating the outlines of a wide range of objects. E.g., the 

outlines of traffic signs next to a road are directly available in 3D point cloud information, whereas in 2D 

images they have to be extracted carefully. This can have a significant impact on the overall reliability and 

accuracy of the respective algorithms. The 3D representation also offers a significant degree of invariance 

with respect to recording techniques. While separate detection models are required for handling airborne and 

ground-based 2D image data, a single, combined model is often able to handle 3D data from a wide range 

of recording platforms, which reduces model maintenance effort and improves generalization of the learned 

representations. Last but not least, while 2D images offer high resolution and potentially multiple observations 

of the same objects, this redundant information is inherently condensed to the essential minimum in 3D point 

cloud representations. Throughout the entire process of recording, transferring and interpreting data, the 

reduced data volume can lead to significant simplifications of all steps. 

Processing methods for 3D data 

When applying machine learning algorithms to 3D point clouds, one of the first and most urgent questions is 

about the representation of 3D data and point neighbourhood relations in the algorithms. While traditional, 

hand-crafted feature extraction algorithms exist, it is obvious that the algorithms benefit from automatically 

optimized features, as 2D deep learning creates them for images. However, 3D point clouds are neither 

densely sampled, nor arranged in a fixed grid like image pixels, and processing such data in a computationally 

efficient way is not trivial. Recent, ground-breaking algorithms in the literature allow  handling this huge 

amount of data.  

Training Data 

The exact amount of training data required for a specific application is hard to quantify, because inherent 

object properties such as their shape, uniqueness and variability play an important role in defining the 

complexity of a data interpretation task. For example, using 3D data it is relatively easy to detect traffic signs 

next to a road, because they simply stick out from the ground. More samples are needed to tell apart round 

traffic signs from triangular ones, and yet more to tell apart individual types of traffic signs. As it will be shown 

in the case studies below, a few hundred training samples are in many cases sufficient to train a 3D object 

detector to a decent performance level, and reasonable prototypes require even less. For semantic 

segmentation it is likewise shown that a few tens of annotated 50x50m tiles are sufficient to reach initial 

models. 

With trained and successfully evaluated models, it still remains an open question how to bring in additional 

training data during operation. It is hard to guarantee that training and test data used during development will 

remain representative for a long-time real world deployment. So the question is how to adapt the already 

trained method efficiently to the data from a novel scenario, which is identified during operation. If sample 

data from the real world deployment becomes available, the complete dataset can be structured into multiple 

domains of data. The data available during initial development can be considered as the source domain, and 
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data from real world deployment as target domain. Accordingly, the difference in performance between 

source and target domains is defined as domain gap, and adjustments to the trained model to improve the 

performance on the target domain are considered as domain adaptation. With every deployment to a novel 

domain, such as deployment in a novel country, there may be new domain gaps, but with more and more 

data available, the unexpected novelty in data will decrease. If additional user input or expert knowledge is 

available, such as feedback provided from end users of the derived data or knowledge about specific new 

varieties of objects in a newly recorded dataset, these can be used for more targeted retraining and 

adaptation steps.  

Case Study 1: 3D Detection of Railway Assets 

In the following, a practical example of 3D object detection for identifying catenary pylons along railway lines 

is shown. Although catenary pylons are very outstanding structures along the track, a simple hand-crafted 

pole-detector will fail to discriminate between pylons, lighting poles, construction elements in stations and 

trees. As a consequence, training a machine-learning method is reasonable and gives a productivity boost in 

comparison to manual selection of all pylons, as well as to filtering false positives of a pole detector. 

Dataset  

Two different datasets consisting of aggregated, high density point cloud data from a moving line-scan LiDAR 

were recorded. The first dataset is a point cloud as from SoA mobile mapping systems, in this case the Leica 

Pegasus system mounted on a train going along a section of railway line. The second dataset was created 

by a Riegl LiDAR system mounted on a multicopter drone as a representative of aerial LiDAR data. The 

datasets were recorded on different railway lines and at different times. In both cases, the data pre-processing 

with all subsequent registration and georeferencing steps have been carried out in accordance with industry 

standards. The dataset recorded from the perspective of a train is spanning a total of 18.3km, and the aerial 

dataset extends over 6.5km. 

  

Figure 1: Samples of the dataset for detection of catenary masts along railway lines, along with the detected bounding 
boxes. 
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The JOANNEUM RESEARCH workflow is designed to handle virtually unlimited dataset sizes. It follows a 

partitioning strategy along a given track to allow for a seamless and efficient object detection. The three most 

frequently occurring catenary mast types were annotated, as shown in Figure 1. The annotation format, 

consist of boxes with the parameters (x, y, z, dx, dy, dz, orientation), which can be comfortably specified in a 

3D labelling environment. In the train dataset this resulted in 4089 mast examples and in the smaller drone 

dataset, there were 675 mast examples. The labelled data was split into fixed, non-overlapping parts of 75% 

for training and 25% for evaluation to ensure that no evaluation data is used for the training. 

Training and Evaluation  

Given sufficient data as stated above, the JOANNEUM RESEARCH 3D object detection workflow provides 

excellent detection results. Its computational efficiency supports the overall scalability of the method and 

allows to train new models at fast turnover rates. On a single GPU, the inference for one tile takes about 1 

second or less and the training process typically finishes in a few hours. During training, an automated data 

augmentation is considered as key for improving the performance of a detector, especially on small datasets 

with few labels.  

Results 

Table 1 shows the results of various training and evaluation setups. As an evaluation metric the mean average 

precision metric was used, which is standard for both 2D and 3D object detection tasks. From the results, it 

becomes clear that nearly perfect 3D object detection is possible for this scenario and dataset, as long as the 

training data is representative of the evaluation data. If there is a domain shift, this gap can be bridged by 

adding additional samples of the target domain into the training process. 

As one scenario of domain shift changes in recording technology were analysed. If the 3D object detector is 

trained exclusively on data recorded with the train-based mobile mapping system, then it still generalizes 

fairly well to aerial data, and the performance drops only from 99.26% to 95.40%. With only 10 additional 

training samples from the target domain, the performance recovers to 98.61%. This is a confirmation that the 

dense, aggregated 3D point cloud representations are inherently robust and in many cases, the same 

relevant details can be spotted regardless of the recording technology. 

In a second scenario, changes in object appearance were investigated. It was assumed that during training, 

only objects of one certain variety (that is, Type 1) is encountered, and during evaluation new varieties (that 

is, Type 2 and Type 3) are encountered, which were not anticipated. In this case, the domain gap is 

significantly larger, i.e. the performance drops from 99.78% to merely 39.12%. Retraining with additional 

samples becomes necessary, and after adding 100 samples of the new varieties, the performance increases 

to 74.70%, being quite reasonable. This drop in performance is significantly lower, if the intersection-over-

union threshold is set to 0.5, indicating that it is mostly the exact prediction of size and location that needs 

the additional training. In this particular case, additional samples are selected at random, and thus, more 

sophisticated selection strategies could potentially achieve higher performances with fewer extra annotations. 
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Table 1: Evaluation of 3D object detection for different numbers of point cloud samples in the source and target 
domains. In the left table, source and target domains are separated by recording technology, in the right table by 
variants of catenary masts. The mean average precision (mAP) metric is shown for an intersection-over-union 
threshold of 0.7. 

 

Overall, a complete database of catenary pylons could be established with less than one hour of processing 

time. The redundancy offered by small overlap areas allows the system to automatically correct all mistakes 

near tile boundaries. Manual work is reduced to adding and correcting only two pylons afterwards. The effort 

to create the pylon detector was approximately 50 hours of manual work including annotation effort and 16 

hours of processing time on a standard PC. It is important to note that the created detector can directly be 

applied to the entire national rail network and easily adapted to international rail networks. 

Case Study 2: 3D Semantic Segmentation of Asphalted Areas 

In the following, a system for automatically identifying asphalted areas is investigated. Individual 3D points 

have to be assigned either to the road surface or background classes. This is a first step of an automated 

pipeline for road quality assessment, where particularly the cross section of the road surface is assessed in 

later processing steps to identify rutting and to ensure the cross slope supports the specified water runoff. 

Manually identifying the exact outlines of the asphalted areas is very time-consuming and not feasible for 

larger sections of road. Hence, an automated solution based on 3D semantic segmentation is introduced. 

Dataset  

A large stretch of cross-country roads was recorded with a car-mounted mobile mapping system from Riegl. 

The moving LiDAR line scanner data was pre-processed, geo-referenced and aggregated into a high-density 

point cloud. To reduce the effort, only 2.2 km of road, covered by about 340 million points, were manually 

annotated and only the two classes “asphalt” and “others” were used to evaluate this use case. 

To process the data, a tiling strategy was applied, allowing the JOANNEM RESEARCH workflow to operate 

on virtually unlimited datasets. The dataset was split to use 70% of the annotated data for training and the 

remaining 30% for evaluation purposes, again ensuring distinct datasets with no overlap. 

Training Dataset 
(# samples) 

Evaluation 
Performance (mAP) 

Train 
Dataset 

UAV 
Dataset 

Train 
Dataset 

UAV 
Dataset 

1710 - 99.26% 95.40% 

1710 10 98.95% 98.61% 

1710 50 98.78% 100.00% 

1710 495 99.41% 100.00% 
 

Training Dataset  
 (# samples) 

Evaluation 
Performance (mAP) 

Typ1 Typ2/3 Typ1 Typ2/3 

1422 - 99.78% 39.12% 

1422 20 99.54% 48.82% 

1422 100 99.78% 74.70% 

1422 500 99.85% 97.31% 

1422 784 99.70% 97.55% 
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Figure 2: Sample images of the semantic segmentation of 3D point clouds, which assigns a label of “asphalt” or 
“background” to individual points. 

Training and evaluation  

Using a single GPU, the training time for the classifier in this workflow is approximately 2-3 hours with the 

mentioned dataset as input. This allows for efficient training of a range of models and optimizing of internal 

hyper-parameters of the network. To evaluate the quality of the segmentation results, the industry-standard 

mean intersection-over-union (mIoU) metric is used. In the IoU metric, the area of agreement between 

predictions and ground-truth is measured and false positives and false negatives are equally accounted for 

as misclassifications. The mean IoU over all relevant classes is then computed as mIoU. 

Results 

Thanks to the rapid turnover times, an evaluation of network architectures and hyper-parameters was 

performed. In these experiments, it was confirmed that modern transformer based network architectures 

show improved performance over sparse convolutional network architectures at comparable computational 

cost.  

The final model achieves a mIoU score of 92.44% on the evaluation set. An in depth evaluation reveals that 

the majority of the remaining errors occur at the edges of the road. The lower left of Figure 2, suggests that 

the model, following the details of the ragged edges of the asphalt, is even superior to human polyline 

annotations. In any case, the manual effort for annotating the selected 2.2 km of road was about 8 hours, 

whereas the automatic segmentation workflow finishes in less than 30 minutes. 
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Conclusions 

Data interpretation workflows for 3D point clouds, such as the JOANNEUM RESEARCH workflow used in 

the two case studies above, are able to produce near-perfect results, when carefully trained and updated via 

domain adaptation. The established workflow thereby greatly increases the productivity of an otherwise 

manual or semi-automated digitization procedure. The benefits over manual workflows were described in 

detail, and significant reductions of manual labour could be achieved. 

Both case studies underline that the technologies for semantic interpretation of 3D point clouds are mature 

and ready for industrial use. With the experience gathered in the development of the workflow, transferring 

these methods to novel scenarios is an efficient process with only little manual effort.  

The learning-based algorithms require an initial annotation phase, but it is precisely this step that ensures 

that very specific interpretation algorithms can be created by providing suitable data. Only little data is 

required for reaching high quality prototypes, and with more data becoming available, these models can 

subsequently be refined and optimized for specific needs. Processing times for training and inference show 

that modest computational resources are needed. The presented methods already scale well and will further 

benefit when parallelized. 
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