JOANNEUM RESEARCH

Promoting adoption while avoiding rebound: integrating disciplinary perspectives on market diffusion and carbon impacts of electric cars and building renovations in Austria

Publication from Life
Internationale Klimapolitik und Ökonomik

Seebauer S., Kulmer V., Fruhmann C.

Energy, Sustainability and Society , 7/2019

Abstract:

Background

Many countries state ambitious targets for reducing carbon emissions. Their policy strategies emphasize energy efficiency by means of technological innovations. However, these strategies are at risk of severe rebound effects, as savings from more efficient products and facilities may be (over-)compensated by rearrangements in consumer behavior. While rebound effects are widely acknowledged, it is less clear how they arise from the complex interactions between market actors, consumer preferences, and policy initiatives.

Results

We propose a simplified representation of these complex dynamics, in order to point out levers for counteracting rebound effects. A pathway mapping integrates results from fuzzy cognitive mapping of expert knowledge, from a household survey on adoption and use and from macroeconomic modelling of energy efficiency policies. Core drivers identified across all methods are joined to a cause-and-effect diagram. The respective strengths of influence are standardized to effect coefficients. By tracing policy impulses through the web of interlinked drivers, the pathway mapping illustrates direct, mediated, and unintended impacts on market diffusion, rebound, and carbon emission reductions of energy-efficient technologies. Pathway mapping is demonstrated as an approach for integrating diverse disciplinary methods into a joint narrative illustrating overarching dynamics.

Conclusions

Applying this methodology to building renovations and electric cars in Austria, the need to balance technology adoption and use becomes apparent. Convergent drivers stimulate the market uptake of the energy-efficient technology and simultaneously constrain rebound effects. For instance, educating customers on product features and activating their pro-environmental values, encourages technology adoption as well as ecological use. Contrastingly, divergent drivers have opposing effects on adoption and use. For example, fuel taxes counteract rebound, but also hinder adoption by increasing lifetime costs. Higher income enables adopters to carry upfront investment costs, but also increases spending in other, carbon-intensive consumption domains. The pathway maps show that market-oriented instruments promote the adoption of energy-efficient technologies but also the rebound effect in their subsequent use. Policy interventions should be carefully designed to leverage convergent and to circumnavigate divergent drivers in order to address multiple impact paths. Climate strategies should not underestimate the role of socio-psychological characteristics and key actors.

Keywords: Rebound effect, Technological innovation, System analysis, System model, Energy efficiency, Policy design

Url: https://doi.org/10.1186/s13705-019-0212-5