Research Area

Intelligent Acoustic Solutions

For many years we have been teaching computers to hear.

Credit: JOANNEUM RESEARCH/B. Bergmann

 

Our intelligent algorithms analyze audio and vibration signals and recognize specific sounds and acoustic scenes in real time - just like humans do. Using the latest methods of artificial intelligence, our algorithms can learn by themselves and react to changes independently.

In addition, we can predict the probability of future events (predictive modeling), make an important contribution to decision-making processes and thus increase efficiency. Our acoustic monitoring systems are used in a wide range of applications.

Acoustic Monitoring

 

We teach your product to hear. Our intelligent algorithms analyze audio signals and automatically detect acoustic events and scenes in real time. Among other things, we develop systems for acoustic monitoring in the fields of:

  • industrial manufacturing,
  • traffic analysis,
  • public safety,
  • medical surveillance.

Akustisches Monitoring, Credit: JOANNEUM RESEARCH/ Bergmann

Acoustic Sensor Technology and Integration

 

We develop application-specific acoustic sensor systems for the detection of airborne sound and vibrations. Depending on the requirements, we select the best acoustic sensor technology. This ranges from laboratory and industrial sensors to highly integrated and cost-efficient MEMS sensors. 

We develop microphone arrays for focused and targeted recording. These microphone systems consist of several individual microphones and enable to detect the exact position of one or more sound sources in the room.

Furthermore, it is possible to track moving sound sources. The newly developed sensor technology PyzoFlex, which made it possible to print wafer-thin vibration sensors using screen printing, is used in special acoustic applications.

Akustiklabor, Credit: JOANNEUM RESEARCH/ Bergmann

Acoustic Interaction Systems

 

Language is the most natural form of interaction for humans. Due to current technical advances in artificial intelligence, language interaction systems are employed in many areas such as production or logistics.

We use modern speech processing technologies such as automatic speech recognition, speech synthesis and natural language understanding (NLU) to design application-specific speech interaction systems. This allows developing systems to communicate and interact with machines or robots via speech.

Furthermore, we have extensive expertise in the fields of interaction design and user studies. Here we develop human-centric approaches for natural interaction paradigms and test and optimize them in user studies for usability and user satisfaction.

Credit: JOANNEUM RESEARCH/ Bergmann

Optimization of Industrial Processes

  • Production/Machine Monitoring
    Monitoring of industrial plants to track production processes and detect deviations.
  • Predictive Maintenance
    Detection of wear and tear and early warning of faulty functions.
  • Industrial quality assurance
    Monitoring of the product quality in the manufacturing process.

Traffic monitoring

Monitoring of traffic events and detection of critical situations.

Project: AKUT





 

Surveillance in Public Spaces

Monitoring and alerting in the event of vandalism and situations endangering safety in public areas.

Project: Graffiti Buster

Drone detection and localisation

Acoustic detection and localization of unmanned flying objects (e.g. drones) to protect buildings and areas.

For further information please contact