Materials

Identification and speed estimation of a moving object in an indoor application based on visible light sensing of retroreflective foils

Publication from Materials
Smart Connected Lighting

Andreas Peter Weiss, Franz Peter Wenzl

Micromachines 12 Art. no. 439, (2021) DOI: 10.3390/mi12040439, 4/2021

Abstract:

Identification and sensing are two of the main tasks a wireless sensor node has to perform in an Internet of Things (IoT) environment. Placing active powered nodes on objects is the most usual approach for the fulfillment of these functions. With the expected massive increase of connected things, there are several issues on the horizon that hamper the further deployment of this approach in an energy efficient, sustainable way, like the usage of environmentally hazardous batteries or accumulators, as well as the required electrical energy for their operation. In this work, we propose a novel approach for performing the tasks of identification and sensing, applying visible light sensing (VLS) based on light emitting diode (LED) illumination and utilizing retroreflective foils mounted on a moving object. This low cost hardware is combined with a self-developed, low complex software algorithm with minimal training effort. Our results show that successful identification and sensing of the speed of a moving object can be achieved with a correct estimation rate of 99.92%. The used foils are commercially available and pose no threat to the environment and there is no need for active sensors on the moving object and no requirement of wireless radio frequency communication. All of this is achievable whilst undisturbed illumination is still provided.