[image: image35.wmf]R

E

S

E

A

R

C

H

J

O

A

N

N

E

U

M

REPORT

HFVM
Library
User Manual

JOANNEUM RESEARCH

Institute of Digital Image Processing

Author:

Gerhard Paar

Version 2.11

11-Aug-1999

1 Introducing HFVM

1.1 Introduction

Relatively few operational stereo matching tools exist currently on the market. Most of them are incorporated into large environments like ERDAS. Standalone tools that are easily configured by the user are not commercially available.

HFVM tries to provide a stereo matching tool for the general application.

1.2 What HFVM Does

HFVM needs two images as input: One left image and one right image. On each pixel of the left image, a corresponding point in the right image is sought. The translation of the respective coordinates is called Disparity (Figure 1).
It should describe the same scene location. The basic result consists of two images: A Row Disparity Image and a Column Disparity Image (Figure 2). They describe the components of a disparity vector on each pixel.

[image: image1.emf]
Figure 1: The disparity vector is composed from the column and row component.
[image: image2.jpg]

 [image: image3.jpg]

Figure 2: Left: The column disparity image. Blue: 60 pixels disparity to the left. Orange: 60 pixels to the right. Red: Undefined regions.Right: The row disparity image. Blue: 150 pixels disparity up. Red: 40 pixels disparity down. Turquoise: Undefined regions.

1.3 Key Points

The only requirement to the input stereo pair is that they are relatively similar to each other. Similarity means that the image contents should not vary too much between left and right image. This requirement is fulfilled not only by stereo image pairs: Motion sequences, time series of changing shape or radiometric contents as well as similar structures like faces can be "matched" to each other.

Similarity of stereo images is strongly dependent on the image acquisition geometry. HFVM can handle image pairs with

· up to 20 % scale difference

· up to 20 degrees rotation

· up to 20 % grey level difference

· a disparity range of up to ¼ of the whole image size (without prior knowledge).

1.4 Using This Manual

The basic concept of HFVM is summarized in Section 2 (Stereo Matching Concept). If you want to customize HFVM for specific applications, it is necessary to change configuration parameters (Section 5.1).

To look at specific results you need to know more about the produced output and the associated file formats. See Section 5 (HFVM File Formats) for that purpose.

To write your own application is possible using the HFVM Library. It allows the access to the HFVM data structures on each pyramid level in each processing state. Section 6 describes this process, Section 7 gives examples for specific application cases.

2 Stereo Matching Concept

2.1 Feature Vector Matching Principle

Many published matching techniques deal with just one or, at most, two different properties of an image. These include grey levels, edges, corners, and other local primitives. A natural extension of this property based matching philosophy is a combination of many of these features that leads to a significant improvement of the stereo matching step, especially in terms of robustness. Such a method combines the advantages of several image features, whereas the particular disadvantages are compensated by the large variety of features. This new approach of stereo matching is based upon the idea of creating a feature vector for each pixel and comparing these features in the images to be registered.

In this paper, the term feature is a defined as a value which numerically describes the neighborhood of a pixel location. Most of the features used here are described as convolutions or can be approximated by means of convolutions [paar91b] Calculating a certain feature for all pixels of an image results in a so-called feature image. In the following a method is presented that matches pixels by comparing a number of features.

Suppose there are m features. All features of one location are collected in the feature vector [image: image4.emf] for this pixel. From the contents of the feature images this vector can be derived for each pixel of the stereo image pair. Finding a match is performed by comparing a feature vector of the reference image, the reference vector, to all feature vectors of the search area which is a part of the search image. The reference image and the search image are named r and s, respectively, and the `images' consisting of the corresponding feature vectors [image: image5.bmp] and [image: image6.bmp] respectively. Then, for a point p, [image: image7.bmp](p) is the feature vector of p in the reference image and [image: image8.bmp](p) the feature vector of p in the search image. The lth component of a vector [image: image9.bmp] is denoted by [image: image10.bmp].

In order to compare a reference vector to a search vector, the feature distance between the two vectors is computed. The feature distance is defined such that each component of the vectors is weighted. If the weight of feature l is denoted as [image: image11.bmp], then the feature distance between the vectors [image: image12.bmp] and [image: image13.bmp] is defined as the Euclidian distance:

[image: image14.png]- . PIHE) - wi)?
lf g = \/ Zl L wi?

After identification of the best search vector, linear interpolation using the neighbor feature vector distances leads to a subpixel disparity. Computing, for a point p, the distance between [image: image15.bmp](p) and each vector in the search image is in general too expensive. In practice, search can be restricted to a small search window, typically 5 x 5 pixels in size. This can be done by using an image pyramid (Section 2.3).

2.2 Consistency Check

To measure the consistency of the disparities, matching from right to left is performed as well. This is called backmatching. On each point l f the left image, the left disparity map is applied. The result is r. Next, the right disparity map is applied on r resulting in l'. The match is defined invalid when the distance between l and l' exceeds a certain threshold, typically one pixel. The backmatching distance is used as quality criterion.

2.3 Hierarchical Feature Vector Matching

In order to evaluate the center of the search area for each point and to improve robustness and efficiency of the matching algorithm, pyramids of the input images are generated. Level 0 of the pyramid is the original image. To create the next level, the average grey-level of four pixels in a square is computed and stored as one pixel in a new image. Matching starts at the top level of the pyramid with large search areas for each pixel. The resulting disparity map is smoothed, and undefined disparities are interpolated, before it is used as input initial disparity map (defining the centers of the search areas) for matching the next lower level of the pyramid.

Incorporating pyramids, backmatching and filter algorithms leads to Hierarchical Feature Vector Matching or HFVM [paar92b].

The major steps are as follows (Figure 3):

1. Build the pyramid.

2. Compute the feature images for each pyramid level for both the reference and the search image.

3. Match the top level of the pyramid: Compare each reference vector to all search vectors of the search space. Best correspondence is found where the feature distance is minimal. The difference in x and y-coordinate is stored as disparity vector. If the minimum feature distance exceeds a given threshold, the correspondence is invalid and the reference pixel is not matchable. As a result, the disparity for the reference pixel remains undefined.

4. Filter the resulting disparity map.

5. Check matching consistency by backmatching.

6. Interpolate the undefined disparities.

7. Use the resulting disparity map as initial disparity map to match the next lower pyramid level.

Steps 4 through 7 are repeated till a disparity map of Level 0 is computed.

[image: image16.wmf]Interpolation

Null Disparity

Null Prediction

Match left-right

Match right-left

Left Disparity

Median Filtering

Right Disparity

Median Filtering

Backmatching

Interpolation

Left - to - Right Disparities

Null Prediction

Match left-right

Match right-left

Right - to - Left Disparities

Left Feature

Images

Right Feature

Images

Pyramid Level N

N-1

Prediction

Prediction

N-2

....

Figure 3: HFVM Concept

3 HFVM main program

The following lines are taken from the SUN manual pages for the Hfvm main program.

NAME

 HFVM - Hierarchical Feature Vector Matching

SYNOPSIS

 Hfvm configfile left_image right_image [-stat] [-saveall]

DESCRIPTION

 hfvm is the Solaris or Windows NT command line version of Hierarchical

 Feature Vector Matching. The specific input parameters are

 read from configfile. Refer to the HFVM User Manual for

 further information.

OPTIONS

 -stat

 Print some statistics to standard output.

 -saveall

 Save all intermediate results.

To see an example application refer to Section 7.2.

4 How the HFVM Program works

Hfvm is driven by a control structure which is loaded from a so-called configuration file (*.cfg), Sections 5.2 and 5.1. For each of the pyramid levels this file sets the parameters such as search windows, names of feature kernels, or global values like pyramid size.

Loading the configuration file also loads all data necessary for processing such as the feature kernels themselves.

Processing then starts with pyramid generation, followed by a process called Intermediate Layer. This intermediate layer can be described as state machine which, in each processing state, reports the currently finished actions to the caller. Data is globally available for saving and changing in all states of the intermediate layer.

According to the settings in the configuration file, Hfvm follows a predefined data flow which is contained as default in the Hfvm library. In the standard case a stereo image pair is used as input, the result after Hfvm are the disparity maps and the backmatching images of the finest selected pyramid level. It is not intended to have access to intermediate states of the intermediate layer, all data flow is automatic.

The programmer can herself change this data flow since the configuration structure and the state of the intermediate layer as well as the intended next state can be controlled from outside on C-calling level.

Figure 4
 depicts the major steps within the Hfvm library data flow. During reading the configuration file all necessary input data (input images, feature kernels, subpixel interpolation lookup- table etc.) are loaded and the values and flags in the global control structure for each level and for the whole matching process are set. The control structure is accessible by the calling program, which means that all values can still be modified after configuration file reading, using the Hfvm library (Section 6)

After configuration file reading the image pyramid is constructed, both for the left and right image. Feature generation provides the desired features for each pyramid level on both stereo images. Optionally feature images (either preprocessed or thematically different, such as images with different illuminations) are read during configuration file reading. The feature pyramid for them is built directly on these input images, whereas the features on the regular input images are built "horizontally" on the respective pyramid level of the input images

Matching and filtering of disparity images is then followed by a consistency check (e.g. backmatching).

In all states intermediate and final results can be written to file and log output, according to the logging level set in the global control structure.

[image: image17.wmf]Hfvm Main Program

Hfvm Library

Intermediate Layer:

Each Pyramid Level

Level 3

Level 2

Hfvm.cfg

ReadConfig

(Kernels, etc.)

Level 1

Global

Configuration- Data

Level 0

Load Images

Right

Image

Left

Image

Generate

Pyramid

Left

Image

Pyramid

Right

Image

Pyramid

Create

Features

Left

Feature

Pyramid

^

Right

Feature

Pyramid

Match

Filter

Disparities

Consistency

Check and

Correction

Prediction

Images

Prediction

on Highest

Level

Input

Images

Load

Prediction

Images

Left

Disparity

Pyramid

Right

Disparity

Pyramid

Disparity

Images

Consistency

Images

Save Results

(each state)

Left

Feature

Images

Right

Feature

Images

Generate

Pyramid

Prediction

Load Images

Auxiliary

Data

(Kernels

etc.)

Left

Consistency

Pyramid

Right

Consistency

Pyramid

Global

Figure 4: Data Flow of Hfvm Main Program. Optional objects and processing steps are dotted

HFVM File Formats

4.1 Configuration File Format and Contents

The configuration file for HFVM has the same format as standard Windows 3.x .ini files.

Care needs to be taken with blanks: Exactly one blank is necessary between separated words in the entry descriptor (e.g. "Left Image").

All classes and entries are optional, except for the specification of features or prepared feature images. The default is one pyramid level, search space (2 2), no subpixel interpolation, empty basename, empty kernel path, no disparity filtering, no backmatching, saving of just the disparity images, no masking and disparity generation on each pixel.

 [Names]

Basename
string
To be prepended to output names

Kernel Path
string
To be prepended to kernel names and subpixel lut (don't forget "/" or "\")

 [Pyramid]

Kernel
string
Filename of pyramid generation kernel

Level Range
int int
Lowest (low) and highest (high) pyramid level to match. HFVM will start with feature generation at highest level high, taking predictions (if given) from Level high+1. The Lowest Level entries will apply for Level low, the Highest Level entries will apply for Level high. Matching is terminated at Level low.

 [Features]

FeatureN
string int
Specifies a kernel for feature generation and its weight. n can be any integer. This index is used for cooperation with Entry "Mask" in the Lowest Level, Intermediate Levels and Highest Level sections.

Left ImageN
string int
Specifies a given left feature image on Level 0 and its weight. n can be any integer. This index is used for cooperation with Entry "Mask" in the Lowest Level, Intermediate Levels and Highest Level sections.

Needs a corresponding "Right Image" with same index.

For these input feature images, the pyramid is generated with same kernel as for the original pyramid for feature generation.

Right ImageN
string int
Specifies a given right feature image on Level 0 (see "Left Image"). Needs a corresponding "Left Image" with same index.

At least one Feature or Left/Right Image combination needs to be specified.

 [Level 0]

The following entries only apply to Level of the pyramid. If matching is only specified for a level range beginning with >0, these entries are obsolete.

Match Points
string
Filename that specifies points that should be matched on Level 0. All operations on higher levels are not affected.

Window
int[4]
Rectangular part on Level 0 to be matched. All operations on higher levels are not affected.

[Lowest Level]

[Intermediate Levels]

[Highest Level]

The following entries can be specified separately for the highest pyramid level, the intermediate levels and the lowest pyramid level. If only one level exists, it uses the Lowest Level entries. With two levels, the Lowest Level and Highest Level entries are used.

Subpixel Lut
string
Filename that specifies the Lookup Table for subpixel interpolation to linearize the subpixel matching results.

Col Disparity Filter
string
The filename of the column disparity filter. Prefarrably a median filter.

Row Disparity Filter
string
The filename of the row disparity filter. Prefarrably a median filter.

Interpolation Size
int
Size of largest hole (masked by the consistendy "Backmatching") to be interpolated

Grid Width
int
Spacing between pixels to be matched. Be careful: The disparity filter should be a median filter, its kernel size should be at least as large as the Grid Width (in the respective direction). Good behavior not yet implemented for Levels > 0.

Search Space
int int
Number of pixels to search in column (scol) and row (srow) direction. Must be > 0. Search window size therefore is (scol*2+1) x (srow*2+1)

Maximum Shifts
int
Maximum number of search window shifts, if the match found is located at the border of the search window

Mask
Feature n

Image n
Specifies, which feature or image is used as mask for matching (see Features).

Mask Limits
int int
Only pixels are matched whose values on Mask are between low and high Mask Limit. (Undefined pixels are interpolated afterwards, if specified by the disparity filter and interpolation procedure.

Consistency
Backmatching

Backmatching Limits
int int
If specified, this will force left-right and right-left matching, as well as the symmetric output of all results. This is recommended at least for Levels > 0. Pixels with backmatching distance not betwen low and high are interpolated. low should be 0.

 [Predictions]

To reduce search space on top level of the pyramid and enhance robustness, predictions can be defined for Level N+1.

Left Col Prediction Image
string
Filename that specifies predictions for left column disparities on Level N+1

Left Row Prediction Image
string
Filename that specifies predictions for left row disparities on Level N+1

Right Col Prediction Image
string
Filename that specifies predictions for right column disparities on Level N+1

Right Row Prediction Image
string
Filename that specifies predictions for right row disparities on Level N+1

4.2 A Configuration File Example

[Names]

; Image names are taken from command line, but could be specified also here.

In that case they would overwrite the command line specified names.

Basename = fm

; Example for kernel path under UNIX

Kernel Path = /opt/software/dib/kernels/

[Pyramid]

;Kernel = feature1.krn

;Disabled: A 2x2 average is used

Level Range = 0 2

[Features]

Feature1 = Lfeature1.krn 1

Feature2 = Lfeature2.krn 2

Feature3 = Ufeature1.krn 2

Feature7 = Ufeature2.krn 2

; Already calculated images that are directly used as features

Left Image1 = ../../images/seq1/2.tif 3

Right Image1 = ../../images/seq1/1.tif 3

[Lowest Level]

Col Disparity Filter = median5.krn

Row Disparity Filter = median5.krn

Interpolation Size = 10

Search Space = 2 2

;= 5x5 search window size

Subpixel Lut = /data3/impro/terrain/develop/data/lut/8.lut

Grid Width = 2

;Backmatching Limits = 0 16
;No backmatching on lowest Level (=Level 0) to save time

Mask = Feature1

Mask Limits = 0 100

[Intermediate Levels]

; In this case just Level 1

Col Disparity Filter = median5.krn

Row Disparity Filter = median5.krn

Interpolation Size = 10

Search Space = 2 2

Backmatching Limits = 0 16
; = 1 pixel Forces backmatching also on highest level

[Highest Level]

Col Disparity Filter = median3.krn

Row Disparity Filter = median3.krn

Search Space = 2 2

; No backmatching on highest level, but forced by spec of

; Intermediate Level. In that case default interpolation size is used.

4.3 Output Files and File Names

All results of HFVM are images. The entry Basename in Section Names determines the name header of each output file.

Following string variables occur in the result filenames:

Level
Pyramid Level

Feature
Feature Index. Not necessarily corresponding with the index specified in the Features class of the configuration file.

Basename
Basename as specified in the Names class of the configuration file.

Following output images are written for the standard saving option:

Image
Description

Basename_fdl_LevelK.tif
Left feature distances

Basename_fdr_Level.tif
Right feature distances

Basename_lfeatFeature​_Level.tif
Left feature

Basename_rfeatFeature​_Level.tif
Right feature

Basename_lbdist​_Level.tif
Left backmatching distances

Basename_rbdist​_Level.tif
Right backmatching distances

Basename_lcol_ Level.tif
Left column disparities

Basename_rcol_ Level.tif
Right column disparities

Basename_lrow_ Level.tif
Left row disparities

Basename_rrow_ Level.tif
Right row disparities

4.4 Disparity Image File Format

Disparity images are represented in 16 bit raster files to be able to cover a range of +/- 1000 pixels with a resolution of 1/16 pixel. Disparity 0 is represented by the Pixel Value 16384 (see Table 1).

Pixel Value
Disparity

16384
0

16400
1

16376
-0.5

16256
-8

-1
UNDEFINED

Table 1: Examples for Disparity Image Values and represented disparities

5 Using the HFVM Library

5.1 Include Files and Global Definitions

Following lines of code have to be added for usage of the HFVM library:

Main Program
#include "Hfvm/Hfvm.h"

/* Error codes */
BEGIN_ERROR_MAP()
 IMPRO_ERROR_CODES
 HFVM_ERROR_CODES
END_ERROR_MAP()

/* Error messages */
BEGIN_ERROR_MSG()
 IMPRO_ERROR_MSG_EN
 HFVM_ERROR_MSG_EN
END_ERROR_MSG()

Subroutines
#include "Hfvm.h"

5.2 HFVM Library Functions

Not all functions of HfvmProto.h are necessary for standard usage of the HFVM library. The following list contains only the necessary subroutines:

5.2.1 InitHfvm

/*--*\

DESCRIPTION: Initialise the HFVM gloabl data structure. Image pointers and flags

 are reset. The next step after this function call would be to read the

 config file an then set the control flags and finish intialisations with

 Setup_HFVM().

--

INPUT:

 szBaseName

Base name of resulting image files

TRANSIENT:

 pControl

The HFVM structure will be initialised

RETURN VALUE:
Function status

--/

int InitHfvm(

 HFVM_T *pControl,

 char *szBaseName

)

5.2.2 DeinitHfvm

/*--*\

DESCRIPTION: Clear image pointers allocated by InitHfvm() and HfvmReadConfig()

--

TRANSIENT:

 PControl

Images in this struct will be freed

RETURN VALUE:
Function status

--/

int DeinitHfvm(

 HFVM_T *pControl

)

5.2.3 HfvmReadConfig

/*--*\

DESCRIPTION: This functions reads a hfvm config file and sets the HFVM_T

 structure accordingly. All specified files (e.g. features, images) are read

 and put to the right place within the struct.

 Missing entries are set from defaults, as far as possible.

 - We assume that the hfvm_init function has been called before.

- It is not possible to define different features for different pyramid

 levels.

- We assume that image sizes are integer divided by two from one level to

 the next.

Input:

 SzConfigName
The name of the configuration file to be read

TRANSIENT:

 PControl

The structure to control HFVM

Return Value:

Function status

---/

int HfvmReadConfig(

 char *szConfigName,

 HFVM_T *pControl

)
5.2.4 SetupHfvm

/*--*\

DESCRIPTION: Initialise and set flags in the HFVM structure so that standard

 application cases need no further tuning of flags. All other application

 specific flags and requests have to be set explicitly by the user.

 Several standard initialisation sequences are supported, further may be

 added as needed:

 MODE_STANDARD:

 For all levels:

 * match pImgLeft and pImgRight images

 * don't save anything

 * don't expect no interaction

 * delete intermediate results as soon as possible (including feature

 images)

 * keep only disparities, consistencies and pyramid input images on the

 lowest pyramid level

 MODE_STANDARD_SAVE:

 * MODE_STANDARD +

 * Saves the Feature images

 * Saves Feature Distance images

 * Saves the Backmatching images

 * Saves the Disparity Images

 MODE_LEFT_RIGHT_STANDARD_SAVE:

 * MODE_STANDARD_SAVE

 * but just Left - to - Right matching

 MODE_LEFT_RIGHT_STANDARD:

 * MODE_LEFT_RIGHT_STANDARD_SAVE

 * but no save of intermediate results (just the output disparities)

 The function also initialises some image data structures so that widths and

 heights are adjusted to actual image sizes. For this purpose Setup_HFVM()

 uses the two arguments 'pImgLeft' and 'pImgRight'.

--

Input:

 uiMode

Define which uiMode to initialise

 pImgLeft

Left optional input image

 pImgRight

Right optional input image

TRANSIENT:

 PControl

Return Value:

Function status

--/

int SetupHfvm(

 HFVM_T *pControl,

 IMAGE_T *pImgLeft,

 IMAGE_T *pImgRight,

 unsigned int uiMode

)

5.2.5 CreateImagePyramid

/*--*\

DESCRIPTION: This functions creates the image pyramid for HFVM processing

 according to the Control flags and kernels which are specified in the HFVM

 control structures.

 When then user Flag 'USE_PYR_KERNEL' is set in the control structure, the

 function calls the repsective filter first and then reduces image size.

 Otherwise it uses the standard function ('Pyr2x2') to create the pyramid.

 USE_PYR_KERNEL:

 The input images are stored in the data structures for each pyramid level.

 It is therefore necessary to call the filter and reduce function for each

 pyramid level seperately.

--

Transient:

 pControl

Keeps flags and images

Return Value:

Function status

--/

int CreateImagePyramid(

 HFVM_T *pControl

)

5.2.6 HfvmStd

/*--*\

DESCRIPTION: Match two images according to the flags etc set within the HFVM

 structure. Each level of the image pyramid is processed calling HFVM_iml().

 This function is the standard interface for standard HFVM processing calls.

 It should be used by the standard User.

 - Creation of prediction images

 The predictions are usually the disparities from the higher levels. For

 the highest level the prediction is usually an image initialised with '0'

 disparity. This image is created sometime during the initialisation process.

 For all other levels, though, the prediction is created by copying the

 disparity from level n+1 to the current level n.

 - User interrupts are handled

 - Statistical data is output on debugging level 2

 - All other functionalities are handled by HfvmLevel(),the intermediate HFVM

 layer.

--

Transient:

 pControl

Contains images, features etc ...

Return Value:

Function status

--/

int HfvmStd(

 HFVM_T *pControl

)

5.3 Calling Sequence for HFVM Library Functions

To illustrate a proper calling sequence which reflects the data flow depicted in
Figure 4
, the following code is part of the Hfvm main program:

/*------------------------------- Includes -----------------------------------*/

#include <stdio.h>

#include <string.h>

#include <time.h>

#include "Impro.h"

#include "Hfvm/Hfvm.h"

/*------------------------------- Constants ----------------------------------*/

/* Error codes */

BEGIN_ERROR_MAP()

 IMPRO_ERROR_CODES

 HFVM_ERROR_CODES

END_ERROR_MAP()

/* Error messages */

BEGIN_ERROR_MSG()

 IMPRO_ERROR_MSG_EN

 HFVM_ERROR_MSG_EN

END_ERROR_MSG()

/* Default debugging level */

const int iDEF_DEB_LEVEL = 3;

/* Licensing */

#include "DibHosts.h"

void main(

 int nArgC,

 char *pcArgV[]

)

{

 int

 nSaveAll = FALSE, /* Intermediate result output enable */

 nStatistic = FALSE, /* Statistics output enable */

 nArgI; /* Running index for command line input */

 double

 dDuration;

 clock_t

 Start,

 Finish;

 HFVM_T

 Hfvm;

 IMAGE_T

 ImgLeft,

 ImgRight;

 /*--+

 | Initialize

 +--*/

 /* Do we execute the program on a registered host? */

 Check_hostid();

 Start = clock();

 /* Set the default logging level and image IO preferences */

 SET_DEB_LEVEL(iDEF_DEB_LEVEL);

 SetImageIOPreferences(IO_anytype);

 /* Read input parameters */

 if (nArgC < 4 || nArgC > 8)

 {

 DEBOUT10(

 "Hfvm: Hierarchical feature vector matching.\n"

 "Usage: Hfvm ConfigFile ImgLeft ImgRight [-stat] [-saveall] [-log]\n");

 exit(ERR_PARAMETER);

 }

 nArgI = 4;

 while ((pcArgV[nArgI] != NULL))

 {

 if (strcmp(pcArgV[nArgI], "-stat") == 0)

 {

 nArgI++;

 nStatistic = TRUE;

 }

 else if (strcmp(pcArgV[nArgI], "-saveall") == 0)

 {

 nArgI++;

 nSaveAll = TRUE;

 }

 else if (strcmp(pcArgV[nArgI], "-log") == 0)

 {

 nArgI++;

 SET_DEB_LEVEL((int) 3);

 }

 else if (strcmp(pcArgV[nArgI], "-tif") == 0)

 {

 nArgI++;

 SetImageIOPreferences(IO_tiff);

 }

 else if (strcmp(pcArgV[nArgI], "-ras") == 0)

 {

 nArgI++;

 SetImageIOPreferences(IO_ras);

 }

 else

 {

 DEBOUT10(

 "Hfvm: Hierarchical feature vector matching.\n"

 "Usage: Hfvm ConfigFile ImgLeft ImgRight [-stat] [-saveall] [-log] \n");

 exit(ERR_PARAMETER);

 }

 }

 /*

 * Initialise the HFVM struct and the input images

 */

 ImgLeft.data = NULL;

 ImgRight.data = NULL;

 CALLM(InitHfvm(&Hfvm, NULL), nErrorCode);

 /*

 * Read the configuration file

 */

 CALLM1(HfvmReadConfig(pcArgV[1], &Hfvm),

 nErrorCode, "Hfvm: Cannot load config file <%s>!\n", pcArgV[1]);

 /*

 * Load the input images

 */

 CALLM1(LoadImageFile(pcArgV[2], &ImgLeft, IO_selectedtype),

 nErrorCode, "Hfvm: Cannot load left image <%s>!\n", pcArgV[2]);

 CALLM1(LoadImageFile(pcArgV[3], &ImgRight, IO_selectedtype),

 nErrorCode, "Hfvm: Cannot load right image <%s>!\n", pcArgV[3]);

 /*

 * Set the standard configuration

 */

 if (nSaveAll)

 {

 CALLM(SetupHfvm(&Hfvm, &ImgLeft, &ImgRight, MODE_LEFT_RIGHT_STANDARD_SAVE), nErrorCode);

 }

 else if (nStatistic)

 {

 CALLM(SetupHfvm(&Hfvm, &ImgLeft, &ImgRight, MODE_STATISTICS), nErrorCode);

 }

 else

 {

 CALLM(SetupHfvm(&Hfvm, &ImgLeft, &ImgRight, MODE_LEFT_RIGHT_STANDARD), nErrorCode);

 }

 /*

 * Prepare the image pyramid

 */

 CALLM(CreateImagePyramid(&Hfvm), nErrorCode);

 /*

 * Do the matching

 */

 CALLM(HfvmStd(&Hfvm), nErrorCode);

 /*

 * De-initialize

 */

 CALLM(DeinitHfvm(&Hfvm), nErrorCode);

 CALLM(FreeImage(&ImgLeft), nErrorCode);

 CALLM(FreeImage(&ImgRight), nErrorCode);

 Finish = clock();

 dDuration = (double)(Finish - Start) / CLOCKS_PER_SEC;

 DEBOUT31("Elapsed time: %.3lf sec.\n", dDuration);

 exit(SUCCESS);

} /* main */

6 Example and Tips

6.1 Preparing the input data

For a successful matching process it is necessary that the image acquisition steps used optimum procedures to provide a good quality input image pair. The following list should help to get a good data base for HFVM:

1. The images should have the biggest achievable overlap area.

2. Avoid rotations and scale difference between the images, although HFVM is quite insensitive against these artifacts. However, accuracy decreases when scaling in the images is different (< 20 %) and images are rotated to each other (<15°).

3. Contrast should be as high as possible, without losing information at the lower and upper ends of the grey level spectra.

4. The images should have similar histograms. Considerable global grey level differences between the images should be removed before matching.

5. Images should be focused properly.

6. Best for HFVM is natural, random texture. It is absolutely necessary to avoid reflections. Therefore flat illumination is recommended.

7. Take care about missing data on image borders. They confuse stereo matching considerably and an area much larger than the actually missing border may be unmatchable.

8. Whenever predictions for overall disparities are available, use them by incorporating disparity prediction images on the highest level of the pyramid.

6.2 Matching a pair of sewage pipe images for navigation

For vision-based navigation it is very useful to know about correspondences in image sequences taken from a movin vehicle [kolesnik98a]. Figure 6 shows two images of a sequence taken from a sewage pipe robot. Here some problems of image acquisition can be clearly detected, some of which can be solved by preprocessing. There is low contrast in the images, the upper image border lacks of data and there is a considerable scaling difference between the images. Contrast difference and border can be enhanced, scaling is the result of the motion which should be detected, therefore the scaling difference should better remain in the images.

The result of border removing and contrast stretch and adaptation is shown in Figure 7.

[image: image18.png]

 [image: image19.png]

Figure 6: Original image pair. Contrast is rather low, on the upper image borders a stripe of data is missing.

[image: image20.png]

 [image: image21.png]

Figure 7: Image pair with missing border removed and contrast stretched and adopted. Program HistAdopt was used for that purpose. Result image names o248.tif and 278.tif.

An operational configuration file is displayed on Table 2. The respective call of Hfvm under UNIX was as follows:

Hfvm 248_278.cfg o248.tif o278.tif -tif

As a result the following files (Figure 8) are generated:

lr_lcol_0.tif
lr_lcol_1.tif
lr_lcol_2.tif
lr_lcol_3.tif
Left-to-right column disparity images on each pyramid level

lr_lrow_0.tif
lr_lrow_1.tif
lr_lrow_2.tif
lr_lrow_3.tif
Left-to-right row disparity images on each pyramid level

lr_rcol_0.tif
lr_rcol_1.tif
lr_rcol_2.tif
lr_rcol_3.tif
Right-to-left column disparity images on each pyramid level

lr_rrow_0.tif
lr_rrow_1.tif
lr_rrow_2.tif
lr_rrow_3.tif
Right-to-left row disparity images on each pyramid level

lr_lbdist_0.tif
lr_lbdist_1.tif
lr_lbdist_2.tif
lr_lbdist_3.tif
Left-to-right backmatching distance images on each level

lr_rbdist_0.tif
lr_rbdist_1.tif
lr_rbdist_2.tif
lr_rbdist_3.tif
Right-to-left backmatching distance images on each level

[Names]

Basename = lr

Kernel Path = /pdib37_home/impro/pag/si/Config/Kernels/

[Pyramid]

Kernel = Gauss33.krn

Level Range = 0 3

[Features]

Feature1 = Gauss73.krn 1

Feature2 = Im52_2b.krn 1

Feature3 = Im73_1b.krn 1

Feature4 = Im73_2-2.krn 1

Feature5 = Im73_2p2.krn 1

Feature6 = Re97_1.krn 1

Feature7 = Real7_3.krn 1

Feature8 = Vline3.krn 1

[Lowest Level]

Col Disparity Filter = Median5.krn

Row Disparity Filter = Median5.krn

Interpolation Size = 10

Search Space = 2 2

Maximum Shifts = 2

Subpixel Lut = 8.lut

;Grid Width = 2

Consistency = Backmatching

Backmatching Limits = 0 8

Mask = Feature1

Mask Limits = 1 255

[Intermediate Levels]

Col Disparity Filter = Median9.krn

Row Disparity Filter = Median9.krn

Subpixel Lut = 8.lut

Interpolation Size = 10

;Grid Width = 2

Search Space = 2 2

Maximum Shifts = 2

Mask = Feature1

Mask Limits = 2 255

Consistency = Backmatching

Backmatching Limits = 0 8

;Mask = Image2

[Highest Level]

Col Disparity Filter = Median15.krn

Row Disparity Filter = Median15.krn

Subpixel Lut = 8.lut

Interpolation Size = 5

Search Space = 5 5

Mask = Feature1

Mask Limits = 1 255

Consistency = Backmatching

Backmatching Limits = 0 8

[Predictions]

;Left Col Prediction Image = lcol.tif

;Left Row Prediction Image = lrow.tif

;Right Col Prediction Image = rcol.tif

;Right Row Prediction Image = rrow.tif

Table 2: Hfvm configuration file 248_278.cfg contents for matching the image pair on Figure 7. Features optimized for tunnel surface [paar96e] were used.

[image: image22.jpg]

 [image: image23.jpg]

 [image: image24.jpg]

Figure 8:Level 0 Backmatching distance, Column and row disparity image (false color) of Figure 7 stereo pair. About the right half of the image is matched correctly, the other regions are mismatched. Due to the sensor motion, disparities should point from the center (with increasing vector length) which is reflected in the left-to right change in the column disparity and the up-to-down change in the row disparity image.

6.3 Matching a stereo pair of sewage pipe images

To demonstrate HFVM stereo reconstruction of sewage pipes, the input image pair on Figure 9 is used. Contrast on some parts of the images is still low, but the scaling is very similar and the images are aligned well which results in a very small search space in row disparity.

The key configuration entries are displayed on Table 3. Since the input image still have different grey levels on corresponding regions, a grey level feature (e.g. Gauss) was completely omitted. Search space 4 pixels in column on Level 4 gives a maximum disparity of 64 pixels on Level 4.

The result is displayed on Figure 10. Problems occur mainly in the right regions of the images where almost no texture exists, as well as directly on the incoming pipe since there is also no texture. The pipe structure is well reflected in the column disparities. The "shaded" row disparity image is mainly effected by slight misalignment of the stereo geometry.

[image: image25.png]

 [image: image26.png]

Figure 9: Input stereo pair, already contrast adopted. Maximum disparity is about 50 pixels

[image: image27.png]

 [image: image28.png]e -

Figure 10: Matching result of stereo image pair on Figure 9
Level Range = 0 4

[Features]

Feature1 = Var55.krn 3

Feature2 = Im52_2b.krn 3

Feature3 = Im73_1b.krn 3

Feature4 = Im73_2-2.krn 3

Feature5 = Im73_2p2.krn 3

Feature6 = Re97_1.krn 3

Feature7 = Real7_3.krn 3

Feature8 = Vline3.krn 2

[Highest Level]

Search Space = 4 1

Table 3: Key configuration entries for sewage pipe stereo reconstruction

6.4 Optical Flow Example: Matching a Pair of Ultrasound Images

Hfvm can be used for stereo matching, but also for determining the optical flow in a sequence of motion images, either for tracking in navigation, or for looking at changes in monitored structure.

[image: image29.png]scan
FFE/M
Td 562 ms

 [image: image30.png]scan
FFE/M
Td 600 ms

 [image: image31.png]

Figure 12: Two subsequent ultrasonic images (left, middle) and the difference image between them (right). The structure change is very subtle.

The texture between two different images is corrupted by a large extent of noise. Therefore the current features used for e.g. tunnel surface reconstruction are not optimum. We recommend to use feature selection techniques [paar98a] to optimize the feature set.

[image: image32.png]

 [image: image33.png]

[image: image34.png]

Figure 13: Left and center: Column and row disparities (blue: -2 pixels, red: 2 pixels; plain blue areas are undefined) of ultrasonic images optical flow. Right: Backmatching distances (black: 0, white: 1 pixel)

To mask out the dark background region, as first feature a Gauss filter was used. A threshold of 30 and the first feature used as mask resulted in the undefined regions on the background in the disparity images.

The following are the key entries in the configuration file:

Level Range = 0 2

(since the changes are very subtle, no large displacements are present)

 [Lowest Level]

Col Disparity Filter = Median9.krn

Row Disparity Filter = Median9.krn

[Intermediate Levels]

Col Disparity Filter = Median15.krn

Row Disparity Filter = Median15.krn

[Highest Level]

Col Disparity Filter = Median15.krn

Row Disparity Filter = Median15.krn

(Strong smoothing recommended due to textural noise)

Mask = Feature1

Mask Limits = 30 255

(to mask out the dark background region)

 [Highest Level]

Search Space = 2 2

(no need to for further search)

6.5 Support

For SW support and bugs reporting please contact

Gerhard Paar
Email: gerhard.paar@joanneum.ac.at
Tel. (+43) 316 / 876-1716

7 Literature by JOANNEUM RESEARCH

[kolesnik98a] Kolesnik, M., Paar, G., Bauer, A., and Ulm, M., Algorithmic Solution for Autonomous Vision-Based Off-Road Navigation, in Proc. 12th Aerosense, SPIE The International Society for Optical Engineering, (Orlando, Florida), April 13-17 1998.

 [paar91b] Paar, G. and Pölzleitner, W., Stereovision and 3d Terrain Modeling for Planetary Exploration, in Proc. 1st ESA Workshop on Comp. Vision and Image Processing for Spaceborne Applications, European Space Research and Technology Centre, (Noordwijk, The Netherlands), June 1991.

 [paar92b] Paar,G. and Pölzleitner,W., Robust Disparity Estimation in Terrain Modeling for Spacecraft Navigation, in Proc. 11th ICPR, International Association for Pattern Recognition, 1992.

 [paar96e] Paar, G. and Bauer, A., Cavity Surface Measuring System Using Stereo Reconstruction, in Proc. SPIE Conference on Intelligent Robots and Computer Vision XV, SPIE, (Boston), November, 19-21 1996.

HFVM Library User Manual
(JOANNEUM RESEARCH, Institute of Digital Image Processing
Version 2.11
11.08.1999
Page
1/1

HFVM Library User Manual
(JOANNEUM RESEARCH, Institute of Digital Image Processing
Version 2.11
11.08.1999
Page
25/1

[image: image35.wmf]_937141239

_988552029.bin

_868370561

