Wir verwenden Cookies

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern.

Essenziell
 
Analyse & Performance
 
Publika-tionsliste
  1. Belegratis, M. R., Schmidt, V., Nees, D., Stadlober, B. & Hartmann, P. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. Bioinspir. Biomim. 9, 016004 (2014).
  2. Griesser, T. et al. Cross-linking of ROMP derived polymers using the two-photon induced thiol–ene reaction: towards the fabrication of 3D-polymer microstructures. Polym. Chem. 4, 1708 (2013).
  3. Leiner, C. et al. Multi-scale simulation of an optical device using a novel approach for combining ray-tracing and FDTD. in Proc. SPIE (Cheben, P., ?tyroký, J. & Molina-Fernandez, I.) 8781, 87810Z–87810Z–9 (2013).
  4. Scheicher, S., Suppan, M. & Gilli, E. Diagnostic Lab-on-a-Chip System Based on Fluorescence Imaging and Integrating Sample Preparation. Biomed. … 58, 18–19 (2013).
  5. Schmidt, V. & Belegratis, M. R. Laser Technology in Biomimetics. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-41341-4
  6.   Bichler, S. et al. Functional flexible organic–inorganic hybrid polymer for two photon patterning of optical waveguides. Opt. Mater. (Amst). 34, 772–780 (2012).
  7. V. Schmidt, Laser-based micro- and nano-fabrication of photonic structures, in Laser growth and processing of photonic devices, N. Vainos, Ed. Woodhead, 2012, pp. 162 – 237
  8. Steindorfer, M. A., Schmidt, V., Belegratis, M., Stadlober, B. & Krenn, J. R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Opt. Express 20, 21485–94 (2012).
  9. Houbertz, R. et al. Optical Waveguides Embedded in PCBs - A Real World Application of 3D Structures Written by TPA. MRS Proc. 1054, 1054–FF01–04 (2011).
  10. Infuehr, R. et al. 3D-structuring of Optical Waveguides with Two Photon Polymerization. MRS Proc. 1179, 1179–BB01–07 (2011).
  11. Langer, G., Satzinger, V., Schmidt, V., Schmid, G. & Leeb, W. R. PCB with fully integrated optical interconnects. in Proc. SPIE (Glebov, A. L. & Chen, R. T.) 7944, 794408–794408–15 (2011).
  12. Woods, R. et al. Epoxy silicone based matrix materials for two-photon patterning of optical waveguides. Polymer (Guildf). 52, 3031–3037 (2011).
  13. Krivec, S. et al. Silica-Based, Organically Modified Host Material for Waveguide Structuring by Two-Photon-Induced Photopolymerization. Adv. Funct. Mater. 20, 811–819 (2010).
  14. Steindorfer, M. A. et al. Light coupling for integrated optical waveguide-based sensors. Proc. SPIE 7726, 77261S–77261S–10 (2010).
  15. Bichler, S. et al. Two-photon patterning of optical waveguides in flexible polymers. Proc. SPIE 7413, 74130W–74130W–11 (2009).
  16. Pucher, N. et al. Structure?Activity Relationship in D-?-A-?-D-Based Photoinitiators for the Two-Photon-Induced Photopolymerization Process. Macromolecules 42, 6519–6528 (2009).
  17. Schmid, G., Leeb, W. R., Langer, G., Schmidt, V. & Houbertz, R. Gbit/s transmission via two-photon-absorption-inscribed optical waveguides on printed circuit boards. Electron. Lett. 45, 219 (2009).
  18. Stampfl, J. et al. Materials for the fabrication of optical waveguides with two photon photopolymerization. Proc. Fifth Int. WLT- Conf. Lasers Manuf. 2–5 (2009). at <http://publik.tuwien.ac.at/files/PubDat_175855.pdf>
  19. Houbertz, R., Satzinger, V., Schmidt, V., Leeb, W. & Langer, G. Optoelectronic printed circuit board: 3D structures written by two-photon absorption. Proc. SPIE 7053, 70530B–70530B–13 (2008).
  20. Satzinger, V. et al. Rapid prototyping of micro-optics on organic light emitting diodes and organic photo cells by means of two-photon 3D lithography and nano-imprint lithography. Proc. SPIE 6992, 699217–699217–10 (2008).
  21. Daschiel, U., Höfler, T., Jakopic, G., Schmidt, V. & Kern, W. Selected Polymers that Contain Aromatic Ester Units: Synthesis, Photoreactions, and Refractive Index Modulation. Macromol. Chem. Phys. 208, 1190–1201 (2007).
  22. Heller, C. et al. One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift. J. Polym. Sci. Part A Polym. Chem. 45, 3280–3291 (2007).
  23. Infuehr, R. et al. Functional polymers by two-photon 3D lithography. Appl. Surf. Sci. 254, 836–840 (2007).
  24. Liska, R. et al. Photopolymers for rapid prototyping. J. Coatings Technol. Res. 4, 505–510 (2007).
  25. Schmidt, V. et al. Application of two-photon 3D lithography for the fabrication of embedded ORMOCER waveguides. Proc. SPIE 6476, 64760P–64760P–9 (2007).
  26. Schmidt, V., Kuna, L., Satzinger, V., Jakopic, G. & Leising, G. Two-photon 3D lithography: A Versatile Fabrication Method for Com-plex 3D Shapes and Optical Interconnects within the Scope of Innovative Industrial Applications. JLMN-Journal of Laser Micro/Nanoengineering 2, 170–177 (2007).
  27. Schmidt, V. & Kuna, L. Focus image feedback-controlled 3D laser microstructuring. Proc. SPIE 6002, 60021C–60021C–11 (2005).
  28. Schmidt, V., Husinsky, W. & Betz, G. Ultrashort laser ablation of metals: pump–probe experiments, the role of ballistic electrons and the two-temperature model. Appl. Surf. Sci. 197-198, 145–155 (2002).
  29. Schmidt, V. & Husinsky, W. Tissue perforation of vessel substitutes using a femtosecond Ti: Sapphire laser system. Proc. SPIE 4166, 54 – 59 (2000).
  30. Schmidt, V., Husinsky, W. & Betz, G. Dynamics of Laser Desorption and Ablation of Metals at the Threshold on the Femtosecond Time Scale. Phys. Rev. Lett. 85, 3516–3519 (2000).