Materials

Switching from weakly to strongly limited injection in self-aligned, nano-patterned organic transistors

Publikation aus Materials

Karin Zojer, Thomas Rothländer, Johanna Kraxner, Roland Schmied, Ursula Palfinger, Harald Plank, Werner Grogger, Anja Haase, Herbert Gold, Barbara Stadlober

Sci. Rep. 6, 31387; doi: 10.1038/srep31387 , 9/2016

Abstract:

Organic thin-film transistors for high frequency applications require large transconductances in combination with minimal parasitic capacitances. Techniques aiming at eliminating parasitic capacitances are prone to produce a mismatch between electrodes, in particular gaps between the gate and the interlayer electrodes. While such mismatches are typically undesirable, we demonstrate that, in fact, device structures with a small single-sided interlayer electrode gap directly probe the detrimental contact resistance arising from the presence of an injection barrier. By employing a self-alignment nanoimprint lithography technique, asymmetric coplanar organic transistors with an intentional gap of varying size (< 0.2??m) between gate and one interlayer electrode are fabricated. An electrode overlap exceeding 1??m with the other interlayer has been kept. Gaps, be them source or drain-sided, do not preclude transistor operation. The operation of the device with a source-gate gap reveals a current reduction up to two orders of magnitude compared to a source-sided overlap. Drift-diffusion based simulations reveal that this marked reduction is a consequence of a weakened gate-induced field at the contact which strongly inhibits injection.