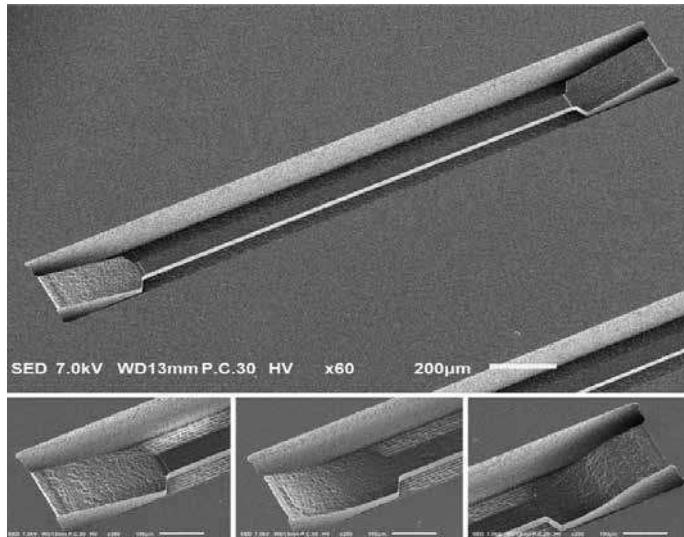


# FLICE – 3D Microstructuring Inside Glass


Precise. Selective. Mask-Free

## CONTACT

JOANNEUM RESEARCH  
Forschungsgesellschaft mbH

### MATERIALS

Institute for Sensors, Photonics  
and Production Technologies  
Franz-Pichler-Straße 30  
8160 Weiz  
Phone +43 316 876-30 00  
materials@joanneum.at  
www.joanneum.at/materials



**FLICE** (Femtosecond Laser Induced Chemical Etching) enables the fabrication of **high-precision 3D hollow structures inside glass** — fast, flexible, and without masks. By combining **ultrashort laser pulses** with **selective wet etching**, we deliver custom microdevices for photonics, microfluidics, and quantum technologies.

## Key Advantages:

- **True 3D structuring** inside transparent materials like fused silica and borosilicate
- **Resolution down to 2 μm**, aspect ratios > 1:500
- **Monolithic fabrication** – no bonding or alignment needed
- **Rapid prototyping** with short development cycles
- **Wafer-level processing** up to 200 × 200 mm



## Application Areas:

- **Integrated optics:** waveguides, couplers, microoptics
- **Microfluidics:** channels, mixers, lab-on-glass systems
- **Quantum technologies:** photonic glass chips
- **MedTech & sensors:** diagnostic microdevices

## One-stop development:

From concept to finished part – we offer complete in-house support for design, prototyping, fabrication, and testing. Let's turn your idea into a next-generation glass microdevice.



This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No #101137974.



**FLMOptChips**  
FFG Funding (Nr. F0999896211)  
**ScaleQUDITS**  
FFG Funding (Nr. F0999914032)