• Menü menu
  • menu Menü öffnen
Publikationen
Life

Robustifying and simplifying high-dimensional regression with applications to yearly stock return and telematics data

Beteiligte Autor*innen der JOANNEUM RESEARCH:
Autor*innen:
Malvina Marchese, María Dolores Martínez-Miranda, Jens Perch Nielsen, Michael Scholz
Abstract:
The availability of many variables with predictive power makes their selection in a regression context difficult. This study considers robust and understandable low-dimensional estimators as building blocks to improve overall predictive power by optimally combining these building blocks. Our new algorithm is based on generalized cross-validation and builds a predictive model step-by-step from a simple mean to more complex predictive combinations. Empirical applications to annual financial returns and actuarial telematics data show its usefulness in the financial and insurance industries.
Titel:
Robustifying and simplifying high-dimensional regression with applications to yearly stock return and telematics data
Herausgeber (Verlag):
Springer Open

Publikationsreihe

Name
Financial Innovation
Herausgeber(Verlag)
Springer Open
Nummer
10, 138 (2024)

Ähnliche Publikationen

Zum Inhalt springen