• Menü menu
  • menu Menü öffnen
Publikationen
Digital

Robust Detection of Critical Events in the Context of Railway Security Based on Multimodal Sensor Data Fusion

Beteiligte Autor*innen der JOANNEUM RESEARCH:
Autor*innen:
Hubner, Michael and Wohlleben, Kilian and Litzenberger, Martin and Veigl, Stephan and Opitz, Andreas and Grebien, Stefan and Graf, Franz and Haderer, Andreas and Rechbauer, Susanne and Poltschak, Sebastian
Abstract:
Effective security surveillance is crucial in the railway sector to prevent security incidents, including vandalism, trespassing, and sabotage. This paper discusses the challenges of maintaining seamless surveillance over extensive railway infrastructure, considering both technological advances and the growing risks posed by terrorist attacks. Based on previous research, this paper discusses the limitations of current surveillance methods, particularly in managing information overload and false alarms that result from integrating multiple sensor technologies. To address these issues, we propose a new fusion model that utilises Probabilistic Occupancy Maps (POMs) and Bayesian fusion techniques. The fusion model is evaluated on a comprehensive dataset comprising three use cases with a total of eight real life critical scenarios. We show that, with this model, the detection accuracy can be increased while simultaneously reducing the false alarms in railway security surveillance systems. This way, our approach aims to enhance situational awareness and reduce false alarms, thereby improving the effectiveness of railway security measures.
Titel:
Robust Detection of Critical Events in the Context of Railway Security Based on Multimodal Sensor Data Fusion
Herausgeber (Verlag):
Multidisciplinary Digital Publishing Institute

Publikationsreihe

Name
Sensors
Herausgeber(Verlag)
Multidisciplinary Digital Publishing Institute
Nummer
24
ISSN
14248220
Weitere Dateien und links
Jahr/Monat:
2024
/ June

Ähnliche Publikationen

Zum Inhalt springen